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Self-Pressurization of Large Spherical Cryogenic Tanks in Space
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The pressurization of large cryogenic storage tanks under microgravity conditions is investigated by coupling
a lumped thermodynamic model of the vapor region with a complete solution of the flow and temperature fields
in the liquid. Numerical results indicate that in microgravity both buoyancy and natural convection are still
important and play a significant role in phase distribution and tank pressurization. A spherical vapor region
initially placed at the center of the tank deforms and moves to one side of the tank before any significant pressure
rise. Long-term results obtained with the vapor region near the tank wall show that, even in microgravity, natural
convection leads to thermal stratification in the liquid and significantly alters the initial pressure rise. The final
rate of pressure rise agrees with a lumped thermodynamic model of the entire system, but the final pressure levels
depart from thermodynamic predictions because of initial transients. The history of the maximum liquid superheat
and subcooling is also determined for each configuration.

Nomenclature
c = specific heat, erg/K · g
g = gravitational acceleration, cm/s2

k = thermal conductivity, erg/cm · s · K
L = latent heat of vaporization, erg/g
m = molar mass, g/mol
p = pressure, Pa
Q = net heat flow, W
q = heat flux, W/cm2

R = spherical tank radius, cm
Rg = ideal gas constant, erg/K · mol
r , z = cylindrical coordinates, cm
T = temperature, K
t = time, s
V = volume, cm3

β = thermal expansion coefficient, 1/K
µ = dynamic viscosity, g/cm · s
ρ = density, g/cm3

Subscripts

b = normal boiling point
l = liquid phase
max = maximum
s = saturation
v = vapor phase
w = tank wall

Introduction

T HE extension of human space exploration from low Earth orbit
into the solar system is one of NASA’s biggest challenges for

the next millennium. The projected exploration programs include a
series of human and robotic expeditions to low and high Earth orbit,
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the moon, Mars, and possibly to the asteroids and other planetary
moons. Integral to all phases of these space and planetary expedi-
tions is effective, affordable, and reliable cryogenic fluid manage-
ment for use in the propellant and life-support systems. Without
safe and efficient cryogen storage, economically feasible and justi-
fied human missions will not be possible.

With the exception of extremely short-duration missions, signifi-
cant cost savings can be achieved if the launch mass can be reduced
by improving the cryogenic storage and transfer technologies.1

Cryogen vaporization is one of the main causes of mass loss and
leads to the self-pressurization of the storage tanks.2 Vaporization
can occur during the filling process, or may be caused by heat leaks
into the tank from the surrounding environment. Ordinarily, the ex-
cess pressure can be relieved by direct venting to the environment.
For on-surface applications, such as those on the surface of the Earth,
moon, or Mars, the spatial configuration of liquid and vapor is dic-
tated by gravity and is well known. In this situation, continuous
venting can be easily accomplished; but over a significant length
of time it results in considerable cryogen mass loss. For in-space
applications, the spatial configuration of liquid and vapor is gener-
ally unknown, and direct venting without prepositioning of the two
phases is precluded due to the possibility of expelling liquid along
with the vapor. Moreover, venting in space is also undesirable be-
cause it prohibits manned flight operations around the storage tanks.

Therefore, from both safety and cryogen conservation viewpoints,
a ventless pressure control strategy is highly desirable for both on-
surface and in-space applications. The zero boil-off (ZBO) pressure
control strategy has been proposed as an effective means of achieve-
ment of ventless storage through the synergetic application of ac-
tive cooling and mixing. The cooling can be achieved by the use of
cryocoolers, and the mixing is normally provided by impellers or
forced liquid jets. The transport mechanisms in such a situation can
be extremely complex and require hand-in-hand experimental and
theoretical elucidation before they are applied in practice.

The self-pressurization of cryogen storage tanks has been the sub-
ject of many previous experimental investigations. (See Ref. 3 for
a somewhat comprehensive list.) However, very few have consid-
ered the differences due to reduced-gravity conditions. One such
work4 shows that the initial rate of pressurization is lower under
reduced-gravity conditions than under normal-gravity conditions,
and this was primarily attributed to an increase in the tank wall sur-
face area covered by liquid. Other aspects of cryogen storage have
been considered, such as the effect of a liquid jet on the bulk mixing
behavior5,6 and its ability to control the tank pressure7 and reduce
thermal stratification.8
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Previous numerical studies of tank pressurization have been pri-
marily limited to purely thermodynamic treatments,9−11 fluid flow,
and thermal stratification in the liquid without any consideration of
the resultant pressure rise in the vapor,12−17 or the evolution of the
phase distribution without any thermal considerations.18−25

Panzarella and Kassemi3 have developed a more comprehensive
numerical model by coupling a lumped thermodynamic treatment
of the vapor region with a direct numerical simulation of the Navier–
Stokes, energy, and continuity equations in the liquid region. In this
way, the effect of the heat and mass transport in the liquid region
on the tank pressure rise can be determined. This approach has
already been used to investigate the pressurization of a small ground-
based tank,3 where it was shown that the initial rate of pressurization
depends on the particular heat flux distribution prescribed on the
tank wall, even though the long-term rate of pressurization agrees
with a purely thermodynamic description of the entire tank. It was
also shown that the pressure rise in a ground-based tank could be
controlled by the use of a subcooled liquid jet.

The present work uses the same approach to investigate the pres-
sure rise for a large tank in microgravity. In microgravity, the vapor
region could be anywhere in the tank, but the first set of results
will show that buoyancy forces bring it right next to the tank wall
in a short amount of time compared to the conduction and con-
vection timescales. Consequently, long-term pressurization is ex-
amined with the vapor region fixed near the tank wall. The results
will also show significant differences between the zero-gravity and
microgravity environments even though the final rate of pressuriza-
tion agrees with thermodynamics. For each configuration consid-
ered here, the time evolution and spatial distribution of the liquid
superheat and subcooling are also determined.

Cryogenic Tank Model
This paper considers a large spherical tank in microgravity filled

with liquid hydrogen and its saturated vapor as illustrated in Fig. 1.
This is similar to the model developed previously to study ground-
based pressurization,3 except for the initial configuration of liquid
and vapor. It is assumed that the vapor region is initially spherical,
located at the center of the tank, and completely surrounded by
liquid. A cylindrical coordinate system is used with the origin at the
center of the tank and with the z axis antiparallel to the direction of
gravity. A typical average acceleration for microgravity is assumed
to be g = 981 × 10−6 cm/s2. Comparisons are also made to solutions
obtained in zero gravity. The problem is assumed to be axisymmetric
with respect to the z axis. The tank is heated by prescription of the
steady heat flux qw uniformly across the entire tank wall surface.

The liquid is treated as an incompressible, Newtonian fluid with
constant properties as described by the standard time-dependent
Navier–Stokes, energy, and continuity equations. The Boussinesq
approximation is used to account for buoyancy effects. The vapor is
treated as an inviscid, compressible, ideal gas with spatially uniform
temperature, pressure, and density. It is assumed to be in thermal
equilibrium with the surrounding liquid as dictated by the Clausius–
Clapeyron equation for an ideal gas (see Ref. 26).

The temperature at the liquid–vapor interface is set equal to the
saturation temperature corresponding to the vapor pressure. The in-
terface is treated as a free surface for the first set of short-duration
results, but for longer-duration studies, it is forced to remain spher-
ical. Even so, fluid is still allowed to flow over its surface by impo-
sition of a zero tangential-stress boundary condition at the interface
and by solution of the tangential velocity.

It is assumed that the liquid–vapor interface does not move due to
evaporation, so that the liquid and vapor volumes remain constant
during the simulation. The liquid volume would actually decrease
over time as liquid evaporated, but for the values of Ql determined
here, the total mass of evaporated liquid is never greater than about
1% of the initial liquid mass. Thus, for the present cases, this is not
a bad assumption.

A lumped-vapor model determines the vapor pressure rise due
to any net heat and mass transfer into the vapor region.3 The final
result is a single evolution equation for the vapor pressure,

ṗv = F(pv)(Ql + Qv) (1)

a)

b)

Fig. 1 Space-based cryogenic tank model considered here assumes
the vapor initially occupies a single spherical region completely sur-
rounded by liquid; also shown is typical numerical mesh for 50% full
tank consisting of 5178 nine-node elements (17,763 nodes).

where Ql is the net heat entering the vapor region through the
surrounding liquid, Qv is the net heat entering the vapor directly
through the tank wall, and F is given by

F(pv) = (L/Vv){cvTs + (Lm/RgTs − 1)[ρl/(ρl − ρv)]

× [L − pv(1/ρv − 1/ρl)]}−1 (2)

Qv is zero if the vapor is completely surrounded by liquid, and Ql

is obtained by integration of the liquid-side heat flux over the entire
free surface.

Comparisons are also made to a lumped thermodynamic model
of the entire tank as described by the following equations, which
represent global energy, mass, and volume balances, respectively:

d

dt
(ρl Vlcl T + ρvVvcvT ) + p

d

dt
(Vl + Vv) = Qw (3a)

d

dt
(ρl Vl + ρvVv) = 0 (3b)

d

dt
(Vl + Vv) = 0 (3c)

These are solved along with the ideal gas law and the saturation
temperature condition to obtain the pressure rise in the tank from
purely thermodynamic considerations. The work term in Eq. (3a) is
automatically zero during storage because the total volume remains
constant.

The governing equations are solved by the use of an in-house
modified version of the commercial finite element code FIDAP.27

It is modified to include the coupled solution of the lumped-vapor
analysis, along with the standard solution of the Navier–Stokes,
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energy, and continuity equations for the liquid region. Additional
details about this approach and studies of the spatial and temporal
convergence for a similar problem can be found in Ref. 3.

The liquid domain is partitioned into a number of nine-node
quadratic interpolation elements. The number of elements in the
mesh varies from between 1470 and 5178, depending on the case,
and the mesh is refined in regions of steeper solution gradients. A
typical mesh is shown in Fig. 1. The mesh deforms by the use of the
method of spines as the vapor region moves. If the mesh becomes
too distorted, then the solution is halted and then restarted with a
more uniform mesh, and the old solution is interpolated onto the new
mesh to obtain the updated initial conditions. At each time step, an
iterative solution strategy is employed to solve the resulting matrix
equations with a relative convergence tolerance of 10−6. Timesteps
are chosen adaptively to keep an estimate of the time truncation
error less than 10−5 (Ref. 28).

The approximate computation time for the following cases varied
from between 10 CPU minutes for the zero-gravity cases to as long
as three days for some of the microgravity cases with a moving
vapor region. These results were obtained on a 1.6-GHz Intel Xeon
computer system with 16 GB of memory running the Red Hat Linux
7.3 operating system.

Results and Discussion
The results of the numerical simulations will be presented in terms

of the time evolution of the vapor pressure, saturation temperature,
maximum liquid superheat and subcooling, and the net interfacial
heat flow into the vapor region. Representative streamline and tem-
perature fields in the liquid region are also presented at given times.
These fields are shown by 10 equally spaced temperature and/or
streamline contours between the minimum and maximum values.
To save space and because the solution is axisymmetric, these con-
tour plots are combined into a single image with the isotherms on
the left and the streamlines on the right. The material properties and
other model parameters used here are listed in Table 1.

Zero-Gravity Case Studies
For the zero-gravity results, the vapor region is assumed to be

spherical and located either at the center of the tank or near the
wall with an arbitrary spacing of 1 mm between the vapor and tank
wall. The actual gap thickness does not matter that much because
the heat flux across any sufficiently thin liquid film would be nearly
the same as the prescribed tank-wall heat flux. The solution for any
other position should lie somewhere between these two extremes.
The liquid is initially motionless with a uniform temperature of 20 K,
and the vapor is in equilibrium with the surrounding liquid.

The pressure rise for these two configurations is shown in Fig. 2
for liquid fill levels of 50 and 95%, and the corresponding saturation
temperatures are shown in Fig. 3. It is clear that the pressure rises

Table 1 Material properties of hydrogen at the normal boiling
point temperature (20.39 K) and other model parameters

Parameter Value

βl 0.0175
cl 9.7 × 107

cv 1.012 × 108

g 981 × 10−6

kl 12440
L 4.456 × 109

m 2.0
µl 1.327 × 10−4

pb 1.014 × 105

qw 10−5

Qw 2.827
R 150
Rg 8.31 × 107

ρl 0.07047
ρv 0.00133
σ 1.93
Tb 20.39

a)

b)

c)

Fig. 2 Pressure rise for a) 50%, b) 95% full tank in zero gravity with
the spherical vapor region centered or fixed near the wall, and c) long-
term results for both fill levels.

Fig. 3 Long-term saturation temperatures corresponding to the vapor
pressures shown in Fig. 2.

more rapidly at first when the vapor region is closer to the wall, but
eventually the rate of pressure rise is the same in all cases and in
agreement with the lumped thermodynamic model of the entire tank.
With the vapor region centered, it takes a couple of days before such
agreement is reached for the 50% full tank and about 20 days for the
95% full tank. This is because the conduction timescale based on
the distance between the tank wall and the liquid–vapor interface,
(R − Rv)

2ρl cl/kl , is very long to begin with, but is even longer
for larger fill levels. When the vapor is near the wall, agreement is
achieved much more quickly, especially for the 95% fill level.
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a)

b)

Fig. 4 Net heat flow into the vapor region through the free surface for
the a) 50% and b) 95% full tank in zero gravity.

The net heat flow into the vapor region is shown in Fig. 4. When
the vapor is close to the wall, Ql has a quick initial rise but becomes
nearly constant later on as the temperature solution in the liquid
approaches a stationary state in which the temperature gradients re-
main nearly the same even though the average temperature keeps
on rising. This stationary state was observed in previous numeri-
cal simulations of smaller ground-based tanks,3 where a perfectly
stationary thermal gradient field was attained in the liquid region.

In the present situation, this stationary state is never perfectly
achieved because the relative pressure changes are much greater.
This follows from the increased surface area of the larger tank,
which, for the same tank-wall heat flux, leads to a greater total heat
input, and the nonlinear nature of the pressure–temperature satura-
tion curve is no longer negligible over the period of time required to
achieve the stationary state. This leads to a very slight upward bend-
ing of the pressure curves and a slight downward bending of the cor-
responding saturation temperature curves, whereas in the smaller,
ground-based tank these curves were perfectly straight. Note also
that the thermodynamic pressure curve is bending in the same man-
ner, and so this is an effect that can be captured by the simpler model
as well.

The temperature field corresponding to this stationary state after
a period of 75 days is shown in Fig. 5 for the 50% full tank and
in Fig. 6 for the 95% full tank. Because the interfacial temperature
is set equal to the saturation temperature, any deviation from that
temperature represents a local superheat or subcooling of the liquid
at that point. Thus, the isotherms shown here actually represent the
distribution of the superheat and subcooling throughout the liquid.
Knowing the distribution of the superheat is important because the
onset of nucleate boiling is most likely to occur in regions of max-
imum superheat, and this could lead to undesirable pressure spikes
as stored thermal energy is suddenly released by boiling. This model
is able to predict the location and magnitude of the maximum super-
heat for different liquid–vapor configurations, and this information
could be used to compute the probability of vapor bubble nucleation.

For the 50% full tank shown in Fig. 5a, the final maximum super-
heat is 0.166 K at the wall, and the subcooling is zero because the
bubble is centered. With the vapor region near the wall as in Fig. 5b,
the final maximum superheat is slightly larger at 0.170 K, and there
is also a maximum subcooling of 0.0497 K in the midst of the liquid
beneath the vapor region. The history of the maximum superheat

a)

b)

Fig. 5 Final isotherms at t = 75 days for a 50% full tank in zero gravity
with a spherical vapor region that is a) centered or b) near the wall;
minimum and maximum temperatures are a) 23.092 and 23.2577 K and
b) 23.061 and 23.281 K.

and subcooling is shown in Figs. 7 and 8, along with the values for
all of the other cases examined here. The superheat and subcooling
both approach constant values in each case as the temperature field
approaches the stationary state.

The subcooling arises because the liquid region requires a larger
fraction of the total heat input to maintain the same rate of average
temperature rise as the vapor. Because the vapor is so close to the
wall, it receives more heat than it actually needs, and this excess
heat is released into the underlying liquid giving rise to the observed
subcooling.

For the 95% full tank shown in Fig. 6a, the final maximum su-
perheat is 0.457 K at the wall, and the subcooling is zero because
the vapor is centered. The maximum superheat is larger than for the
50% full tank because the vapor is further away from the wall. When
the vapor region is closer to the wall as in Fig. 6b, the final maxi-
mum superheat decreases to 0.271 K, and a maximum subcooling
of 0.305 K arises near the center of the tank as excess heat received
by the vapor is released into the underlying liquid. The maximum
superheat still occurs on the tank wall, but not at the point where the
vapor is closest to the wall as one might think. This is because the
temperature drop across the intervening liquid film must approach
zero as its thickness approaches zero to satisfy the constant heat flux
boundary condition prescribed on the tank wall. The history of the
maximum superheat and subcooling for this case is also shown in
Figs. 7 and 8.

Microgravity Case Studies
The microgravity investigations are further divided into two cases.

In the first case, the spherical vapor region is initially centered, and
the history of the tank pressure, as well as the evolution of the liquid
flow and thermal fields, are examined by following the deforming
vapor region as it approaches the tank wall. The initial conditions
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a)

b)

Fig. 6 Final isotherms at t = 75 days for a 95% full tank in zero gravity
with a spherical vapor region that is a) centered or b) near the wall;
minimum and maximum temperatures are a) 21.737 and 22.194 K and
b) 21.649 and 22.225 K.

Fig. 7 History of the maximum superheat for both the 50 and 95%
full tank in ——, zero gravity and – – –, microgravity.

Fig. 8 History of the maximum subcooling for both the 50 and 95%
full tank in ——, zero gravity and – – –, microgravity.

for the temperature and velocity are the same as before. It is shown
that the vapor region reaches the wall after a short period of time
relative to the conduction or convection timescales.

The second case study focuses on the temperature, pressure, and
flowfields that develop over a longer time span, whereas the spheri-
cal vapor region is fixed near the wall. The free surface oscillations
of the bubble are not accounted for, but fluid slip is allowed by the
assumption that there is no shear stress on the vapor side of the inter-
face. This permits us to study the average long-term pressurization
without being limited by the smaller timesteps required to resolve
the minor fluctuations caused by the surface oscillations.

Also note that the magnitude and direction of the acceleration vec-
tor are assumed to be constant here, whereas in reality they would
undoubtedly fluctuate over time. However, as long as these fluctu-
ations happen on a timescale much shorter than the other relevant
timescales, the replacement of the actual acceleration profile with
its time-averaged value is an acceptable approximation.

Moving Vapor Region
The initially centered vapor region drifts upward due to buoyancy,

as shown in Fig. 9a. For the 50% full tank, it takes less than 13 min
for the vapor to reach the tank wall, which is not that surprising
when one considers that, during that amount of time, the tank itself
has moved a distance of about gt2/2 = 298 cm, almost the entire
tank diameter. The liquid is being dragged along by the tank wall,
but this is countered by the liquid’s own inertia, which will tend
toward keeping it at the bottom of the tank.

The top of the vapor region flattens as it rises, and this brings the
vapor nearest the tank wall not to the top as one might expect, but
to a point further to the side. The liquid above this point is trapped
momentarily and slowly drains downwards along the wall through
a thin liquid film with a maximum speed of 1.27 cm/s in Fig. 9a and
1.24 cm/s in Fig. 9b. During this time, the thermal boundary layer

a)

b)

Fig. 9 Isotherms and streamlines at a) t = 791 s and b) t = 1014 s for a
50% full tank in microgravity with an initially centered spherical vapor
region.
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Fig. 10 Pressure rise and net heat input for the case shown in Fig. 9.

is still concentrated very close to the tank wall because the heat
conduction timescale is measured in days for such a large tank, but,
as a result of this drainage, a layer of warmer fluid near the wall is
convected along the free surface and breaks up into a train of vortices
as shown from the streamline plots in Fig. 9. After about 15 min,
the liquid film has nearly finished draining, and the simulation is
terminated because the distance between the interface and the tank
wall becomes so small that it can no longer be justifiably resolved
with the present free-surface methodology. It seems likely that the
film would rupture past this point, leading to the formation of a
vapor dry patch, but this cannot presently be determined.

The corresponding pressure rise and net heat flow for this case are
shown in Fig. 10. Clearly, there is no heat flow into the vapor region,
and, consequently, no pressure rise until the vapor gets very close
to the wall. Then, the heat flow becomes very erratic because of the
train of vortices and also because of the free-surface oscillations.

The maximum superheat and subcooling are, respectively, 0.0114
and 0.000422 K in Fig. 9a and 0.0123 and 0.000267 K in Fig. 9b.
These are very small because the thermal boundary layer has not yet
had enough time to develop sufficiently. The history of the maximum
superheat and subcooling is also shown in Figs. 7 and 8.

A similar solution is obtained for the 95% full tank, as shown in
Figs. 11 and 12. After only a few minutes, the vapor region is well
on its way toward the wall as shown in Fig. 11a. At the intermediate
time shown in Fig. 11b, the vapor region is clearly being pushed
up against the wall with only a very thin liquid film in between.
Eventually, surface tension pulls the vapor region back into a nearly
spherical shape as shown in Fig. 11c, at which point the simulation
is again terminated because the liquid film becomes too thin to be
meaningfully resolved.

A well-known result from elementary fluid mechanics is that a
vapor bubble initially at rest and surrounded by liquid will rise
with an initial acceleration of 2g as long as ρv � ρl (Ref. 29). This
result comes from balancing the buoyancy force with the force
required to accelerate the surrounding liquid (the added mass).
Because the initial distance between the vapor and tank wall is
150 cm − 55.26 cm = 94.74 cm, a simple calculation based on this
distance and acceleration would yield a time to reach the wall of
311 s. This is close to, but slightly less than, the time predicted by
the model, but this is understandable due to the interference caused
by the tank wall. This prediction is not as accurate for the 50% full
tank because the vapor region quickly deforms from its spherical
shape, and then it becomes a problem dictated by the draining liquid
film, not buoyancy.

a)

b)

c)

Fig. 11 Isotherms and streamlines at a) t = 259 s, b) t = 463 s, and
c) t = 567 s for a 95% full tank in microgravity with an initially centered
spherical vapor region.

While the vapor region is being pushed up against the wall, it
receives an extra amount of heat as evidenced by the sharp upward
spike in Ql , as indicated in Fig. 12. However, once it begins to retract
from the wall as surface tension forces try to restore its spherical
shape, it no longer receives as much heat, and Ql decreases. Near
the end of the simulation, the vapor has moved so far away from
the wall that it receives hardly any additional heat, and, in fact, Ql

becomes slightly negative as the excess heat stored in the vapor
region gets released into the subcooled bulk liquid below.

The final maximum superheat and subcooling are, respectively,
0.00462 and 0 K in Fig. 11a, 0.00698 and 0.000168 K in Fig. 11b,
and 0.00802 and 0.00147 K in Fig. 11c. Again, these values are
extremely small because the thermal boundary layer has not yet fully
developed. The history of the maximum superheat and subcooling
is also shown in Figs. 7 and 8.

Stationary Vapor Region Near the Wall
The preceding case study implied that after a relatively short

period of time in microgravity, the vapor region will migrate close
to the tank wall, provided that there is no major change in the average
direction of the residual acceleration vector during that time. This
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Fig. 12 Pressure rise and net heat input for the case shown in Fig. 11.

may eventually lead to the formation of dry patches if the vapor
touches the wall, but the complex behavior of these dry patches is
beyond the scope of the present paper.

Instead, we consider the following two limiting configurations.
In the first, the vapor region is spherical and close to the tank wall.
In the second, there is a flat interface separating liquid and va-
por like the ground-based configuration. The actual configuration
will lie somewhere between these two extremes. The importance
of the flat-interface configuration is that it represents the limiting
case where the maximum amount of vapor touches the tank wall in
a stably stratified configuration. The real interface will likely never
be completely flat, especially because the contact angle of liquid
hydrogen is nearly zero. It is more likely that it would resemble an
oblate spheroid in partial contact with the tank wall. The solution for
that case would be very complex due to the motion of the dynamic
contact line and cannot be considered with the present free-surface
methodology. However, the pressure rise for that case would likely
be bounded by the two limiting configurations considered here.

In the first case, the spherical vapor region is positioned near the
wall such that the intervening liquid film is only 1-mm thick as
shown for both fill levels in Fig. 13. As before, it is not allowed
to move from this position or deform from its spherical shape, but
liquid is allowed to slip over its surface.

By comparison of the resulting pressure, temperature, and heat
input curves in Figs. 14–16 with those obtained previously under
zero-gravity conditions, it is clear that, even in microgravity, natural
convection still plays a significant role. Initially, the pressure rise
agrees with the corresponding zero-gravity case, but, after 12 h, the
additional heat carried by natural convection reaches the interface
and causes the pressure to increase even faster and eventually surpass
that predicted by thermodynamics.

There is a sudden increase in Ql as the warm fluid brought by
natural convection reaches the interface as shown for both fill levels
in Fig. 16, but, eventually, they both settle back down to the same
constant value as before. The Ql curve for the 95% full tank shown
in Fig. 16b exhibits more fluctuations early on due to a competition
that arises between two counter-rotating convection cells in the tank.
One of them brings warmer fluid near the wall up to the interface,
whereas the other one brings cooler fluid from the bulk liquid, and
this interplay manifests itself as the fluctuations in Ql .

The final isotherms for both fill levels are shown in Fig. 13.
These are noticeably different from the corresponding isotherms
for the zero-gravity cases shown in Figs. 5 and 6 because they

a)

b)

Fig. 13 Final isotherms and streamlines at t = 75 days for a) 50% and
b) 95% full tank in microgravity with the spherical vapor region fixed
near the wall; minimum and maximum temperatures are a) 23.071 and
23.271 K and b) 21.848 and 22.267 K.

show significant thermal stratification due to natural convection.
It might seem surprising to have thermal stratification in micro-
gravity, but this can be understood when it is considered that the
intensity of natural convection, as measured by the Grashof num-
ber Gr = gβlρ

2
l qw R4/klµ

2
l , is a very rapidly increasing function

of the tank radius, whereas it is only linearly proportional to the
gravitational acceleration. Thus, for the large tank in microgravity
considered here, Gr = 1.97 × 107, and this is very close to the value
Gr = 2.4×107 for the smaller 10-cm-diam ground-based cryogenic
tank considered previously,3 for which there was significant thermal
stratification. For both cases, the Prandtl number is the same. Thus,
it is not surprising that a similar degree of thermal stratification is
observed here.

The final maximum superheat and subcooling are now, respec-
tively, 0.110 and 0.0899 K in Fig. 13a and 0.137 and 0.282 K in
Fig. 13b. The maximum superheat is less than it was for the corre-
sponding zero-gravity case, more so for the 95% full tank because
there is additional mixing due to natural convection. The maximum
flow speed due to natural convection is 0.00401 cm/s in Fig. 13a and
0.00313 cm/s in Fig. 13b. Even though these flows are very weak,
they have a definite accumulative effect over the long periods of
time considered here. The history of the maximum superheat and
subcooling is also shown in Figs. 7 and 8.

The pressure and temperature rise for the flat-interface configu-
ration are shown in Figs. 14 and 15 for both the 50 and 95% fill
levels. These curves exhibit the most drastic departure from both
the thermodynamic predictions and from the zero-gravity curves in
Figs. 2 and 3. This is due to the vapor being in direct contact with
the wall and, consequently, receiving much more heat than it needs
according to thermodynamics. However, the extra heat cannot leave
the vapor region until the conduction boundary layer fully devel-
ops on the liquid side of the interface, and that is a relatively slow
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a)

b)

c)

Fig. 14 Pressure rise for a) 50% and b) 95% full tank in microgravity
with two liquid–vapor configurations, namely, a spherical vapor region
fixed near the wall and a flat liquid–vapor interface, and c) long-term
results for both fill levels.

Fig. 15 Long-term saturation temperatures corresponding to the
vapor pressures shown in Fig. 14.

process. In the meantime, this extra heat goes into raising the vapor
pressure at the most rapid rate yet. In all of the preceding cases,
heat had to pass through some liquid first before getting into the
vapor region, but not in this case. Eventually, the rate of pressure
rise agrees with thermodynamics as the net heat flow into the vapor
approaches that predicted by thermodynamics.

The final maximum superheat and subcooling are 0.00340 and
0.466 K in Fig. 17a and 0.0000381 and 0.563 K in Fig. 17b. The

a)

b)

Fig. 16 Net heat flow into the vapor region through the free surface
for the a) 50% and b) 95% full tank in microgravity corresponding to
the cases shown in Fig. 14.

a)

b)

Fig. 17 Final isotherms and streamlines at t = 75 days for a) 50% and
b) 95% full tank in microgravity with a flat liquid–vapor interface;
minimum and maximum temperatures are a) 22.935 and 23.404 K and
b) 21.814 and 22.377 K.
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superheat is so small because the net direction of heat flow across the
interface is now reversed (from vapor to liquid) as indicated by the
final negative values of Ql in Fig. 16. The subcooling is very large for
that same reason. This actually stabilizes the liquid and reduces the
probability of any additional vapor-bubble nucleation. The history
of the maximum superheat and subcooling is also shown in Figs. 7
and 8. The maximum flow speed in the liquid is 0.00196 cm/s in
Fig. 17a and 0.00278 cm/s in Fig. 17b.

Generally speaking, from these final results, one may also sur-
mise that the configuration of liquid and vapor that minimizes the
probability of nucleate boiling would be one in which the vapor
completely surrounds a spherical liquid region in the center of the
tank. If no liquid is in direct contact with the tank walls, then all
of the heat entering the liquid region must go through the vapor
first, and this would naturally lead to a situation where the entire
liquid region is completely subcooled. Nucleation is not possible in
a completely subcooled liquid. This configuration could potentially
be achieved by the use of some form of magnetic reorientation, but
that idea is left for future work.

Conclusions
In this paper, we have carefully examined the pressurization of

large liquid hydrogen storage tanks by comparing the results from
microgravity, zero-gravity, and ground-based numerical case stud-
ies. This was done for a number of different liquid–vapor configu-
rations and fill levels. The results show that buoyancy and natural
convection are still important in microgravity and cannot be ig-
nored when the pressurization of large cryogenic tanks in space are
predicted.

The initial and long-term pressurization rates were determined
for several different liquid–vapor configurations and gravity levels.
For a large tank in microgravity, the vapor region moves toward the
tank wall very quickly when compared to the conduction and nat-
ural convection timescales. Thus, long-term pressurization studies
were conducted with the vapor region fixed near the wall. For each
case, the final rate of pressure rise agrees with the rate predicted by
a simpler thermodynamic model, even though the initial pressuriza-
tion rates depend on the configuration and gravity level. Because
of these initial transients, the final pressure levels are also different.
In zero gravity, the final pressures are all less than thermodynamic
predictions, but, in microgravity, they are all greater than thermo-
dynamics. The initial pressure rise is greatest for the flat-interface
configuration because the vapor is in direct contact with the tank
wall. In general, the initial rate of pressurization will be greater
when more vapor is in direct contact with the wall because it ini-
tially receives more heat than is apportioned to it by thermodynamic
predictions.

It was also shown that the final rate of pressure rise for a 50%
full tank is greater than that for a 95% full tank, regardless of the
liquid–vapor configuration. This is not entirely surprising because
the simpler thermodynamic model predicts the same result. In gen-
eral, the rate of pressure rise is less for higher fill levels because
a larger fraction of the total heat input goes into raising the liquid
temperature, and less heat is available to raise the temperature and
pressure of the vapor region.

For relatively large tanks in microgravity, natural convection and
buoyancy effects are still important. The results presented here
demonstrate this because the pressure rise and thermal stratification
are different from those obtained in a zero-gravity environment. The
degree of liquid superheat is also lessened due to the mixing effects
of natural convection. This is important to know because, as the liq-
uid superheat increases, so does the probability of nucleate boiling,
and this can lead to undesirable pressure spikes due to rapid boiling.

It was also shown that the superheat is highest when the vapor
region is in the middle of the tank and lowest when more vapor is in
direct contact with the tank wall because the net direction of inter-
facial heat flow is then usually reversed. The best configuration for
minimization of the superheat would be to have the liquid region
in the middle of the tank completely surrounded by vapor. How-
ever, this configuration may not be so desirable because it would
also lead to the most rapid changes in pressure due to any changes

in the tank wall heat flux. This also implies that the most rapid
cooling is achieved if the cryocooler is placed within the vapor re-
gion, which would be easier to do if the vapor were touching the
wall.

Acknowledgments
This work was supported by the NASA Office of Biological

and Physical Research through the Microgravity Division at NASA
Glenn Research Center at Lewis Field. Additional resources were
provided by the Computational Microgravity Laboratory and the
Microgravity Fluids Physics Branch at NASA John H. Glenn Re-
search Center at Lewis Field.

References
1Salerno, L. J., and Kittel, P., “Cryogenics and the Human Exploration of

Mars,” Cryogenics, Vol. 39, No. 4, 1999, pp. 381–388.
2Kittel, P., and Plachta, D. W., “Propellant Preservation for Mars Mis-

sions,” Advances in Cryogenic Engineering, Vol. 45, Plenum, New York,
2000, pp. 443–450.

3Panzarella, C. H., and Kassemi, M., “On the Validity of Purely Thermo-
dynamic Descriptions of Two-Phase Cryogenic Fluid Storage,” Journal of
Fluid Mechanics, Vol. 484, June 2003, pp. 136–148.

4Aydelott, J. C., “Effect of Gravity on Self-Pressurization of Spherical
Liquid-Hydrogen Tankage,” NASA TN-D-4286, Dec. 1967.

5Aydelott, J. C., “Axial Jet Mixing of Ethanol in Cylindrical Containers
During Weightlessness,” NASA TP-1487, July 1979.

6Aydelott, J. C., “Modeling of Space Vehicle Propellant Mixing,” NASA
TP-2107, Jan. 1983.

7Lin, C. S., Hasan, M. M., and Van Dresar, N. T., “Experimental Inves-
tigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank,”
AIAA Paper 94-2079, July 1994.

8Poth, L. J., and Van Hook, J. R., “Control of the Thermodynamic State of
Space-Stored Cryogens by Jet Mixing,” Journal of Spacecraft, Vol. 9, No. 5,
1972, pp. 332–336.

9Lin, C. S., and Hasan, M. M., “Self Pressurization of a Spherical Liq-
uid Hydrogen Storage Tank in a Microgravity Environment,” AIAA Paper
92-0363, Jan. 1992.

10Vaughan, D. A., and Schmidt, G. R., “Analytical Modeling of No-Vent
Fill Process,” Journal of Spacecraft, Vol. 28, No. 5, 1991, pp. 574–579.

11Cha, Y. S., Neiman, R. C., and Hull, J. R., “Thermodynamic Analysis of
Helium Boil-off Experiments with Pressure Variations,” Cryogenics, Vol. 33,
No. 7, 1993, pp. 675–679.

12Grayson, G. D., Watts, D. A., and Jurns, J. M., “Thermo-Fluid-Dynamic
Modeling of a Contained Liquid in Variable Heating and Acceleration En-
vironments,” American Society of Mechanical Engineers, ASME Paper
FEDSM97-3567, June 1997.

13Lin, C. S., and Hasan, M. M., “Numerical Investigation of the Thermal
Stratification in Cryogenic Tanks Subjected to Wall Heat Flux,” AIAA Paper
90-2375, July 1990.

14Navickas, J., “Prediction of a Liquid Tank Thermal Stratification by a
Finite Difference Computing Method,” AIAA Paper 88-2917, July 1988.

15Grayson, G. D., and Navickas, J., “Interaction Between Fluid Dynamic
and Thermodynamic Phenomena in a Cryogenic Upper Stage,” AIAA Paper
93-2753, Jan. 1993.

16Lin, C. S., and Hasan, M. M., “Vapor Condensation on Liquid Surface
Due to Laminar Jet-Induced Mixing: The Effects of System Parameters,”
AIAA Paper 90-0354, Jan. 1990.

17Hochstein, J. I., Gerhart, P. M., and Aydelott, J. C., “Computational
Modeling of Jet Induced Mixing of Cryogenic Propellants in Low-g,” AIAA
Paper 84-1344, June 1984.

18Liu, C. H., “A Numerical Calculation of Time Dependant Dynamical
Behavior of Liquid Propellants in a Microgravity Environment,” Micrograv-
ity Science and Technology, Vol. 7, No. 2, 1994, pp. 169–172.

19Hung, R. J., and Shyu, K. L., “Constant Reverse Thrust Activated Reori-
entation of Liquid Hydrogen with Geyser Initiation,” Journal of Spacecraft
and Rockets, Vol. 29, No. 2, 1992, pp. 279–285.

20Kothe, D. B., Mjolsness, C. R., and Torrey, M. D., “RIPPLE: A Com-
puter Program for Incompressible Flows with Free Surfaces,” Los Alamos
National Lab., Rept. LA-12007-MS, Los Alamos, NM, April 1991.

21Thornton, R. J., and Hochstein, J. I., “Microgravity Propellant Tank
Geyser Analysis and Prediction,” AIAA Paper 2001-1132, Jan. 2001.

22Marchetta, J. G., and Hochstein, J. I., “Simulation and Dimensionless
Modeling of Magnetically Induced Reorientation,” AIAA Paper 2000-0700,
Jan. 2000.

23Marchetta, J. G., Hochstein, J. I., and Sauter, D. R., “Simulation and
Prediction of Magnetic Cryogenic Propellant Positioning in Reduced Grav-
ity,” AIAA Paper 2001-0930, Jan. 2001.



308 PANZARELLA AND KASSEMI

24Peterson, L. D., Crawley, E. F., and Hansman, R. J., “Nonlinear Fluid
Slosh Coupled to the Dynamics of a Spacecraft,” AIAA Journal, Vol. 27,
No. 9, 1989, pp. 1230–1240.

25Hung, R. J., and Lee, C. C., “Effect of a Baffle on Slosh Waves Excited
by Gravity-Gradient Acceleration in Microgravity,” Journal of Spacecraft
and Rockets, Vol. 31, No. 6, 1994, pp. 1107–1114.

26Reif, F.,” Fundamentals of Statistical and Thermal Physics, McGraw–
Hill, New York, 1965, p. 306.

27Engelman, M. S., and Sani, R. L., “Finite Element Simulation of
Incompressible Fluid Flows with a Free/Moving Surface,” Computa-

tional Techniques for Fluid Flow, Pineridge, Swansea, Wales, U.K., 1986,
pp. 47–74.

28Gresho, P. M., Lee, R. L., and Sani, R. C., “On the Time-Dependent
Solution of the Incompressible Navier–Stokes Equations in Two and Three
Dimensions,” Recent Advances in Numerical Methods in Fluids, Vol. 1,
Pineridge, Swansea, Wales, U.K., 1979, pp. 27–79.

29Panton, R., Incompressible Flow, Wiley, New York, 1984, p. 557.

W. Williamson
Associate Editor


