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Abstract

The three-dimensional microstructure of 78 and 52 vol.% Sn-rich particles coarsened within a liquid Pb–Sn matrix were determined by
the reconstruction of serial sections. The three-dimensional particle size distribution (PSD) and the particle–particle contact distributions
were determined. The three-dimensional PSDs do not match those predicted by particle coarsening theory, but there is reasonable agree-
ment with the grain size distributions predicted by a grain growth simulation. In addition, when the particle–particle contact distribution
is normalized to the average number of particle contacts, the distribution is statistically invariant with volume fraction. At 52 vol.% it is
found that the number of contacts is proportional to the square of the average particle size, but this is not true for 78 vol.%. This is
attributed to the increased shape distortions of the particles that are present in the higher volume fraction samples.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ostwald ripening occurs in multi-phase materials and is
a diffusional process in which a system lowers its total
energy by reducing the total interfacial area. In a two-phase
system, large particles grow at the expense of smaller par-
ticles. As the system coarsens, the average particle size
increases, while the total volume fraction of particles
remains constant. Thus, there is a reduction in the average
particle density within the system. Ostwald ripening occurs
in many two-phase mixtures and can have a major effect on
the properties of a material. For example, coarsening in
precipitation-hardened alloys has a significant effect on
materials properties, since the decrease in particle density
leads to a degradation of the mechanical strength of the
alloy.

Initial investigations into the kinetics of Ostwald ripen-
ing of particles within a matrix were performed by Green-
1359-6454/$30.00 � 2006 Acta Materialia Inc. Published by Elsevier Ltd. All

doi:10.1016/j.actamat.2005.12.038

* Corresponding author. Fax: +1 847 491 7820.
E-mail address: p-voorhees@northwestern.edu (P.W. Voorhees).
wood [1], where the growth rates of individual particles
within a dispersion of particles were determined theoreti-
cally, assuming that the particles are infinitely separated
from each other. The results compared qualitatively well
to experimental results, but the theoretical treatment did
not address the evolution of the size distribution of
particles.

The original description of the kinetics of Ostwald ripen-
ing of a distribution of particles was proposed by Lifshitz
and Slyozov [2] and Wagner [3]. They examined the coars-
ening of infinitely separated, spherical particles. In the limit
where t!1, a similarity solution was found, wherein the
microstructure should become self-similar when scaled by
the average particle size and the average particle size
increased with time as t1/3.

While this theory captured some more important under-
lying physics of the coarsening process, it suffered from an
unrealistic assumption of a zero volume fraction of the
coarsening phase. Much of the later theoretical work has
examined the effects of interparticle diffusional interactions
that occur in systems with a finite volume fraction [4–13].
rights reserved.
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The difficulty in developing such a theory lies in the need to
account for the overlapping diffusion fields surrounding the
particles. Because of this, most theories assume that the
particles are spherical and noncontacting, which limits
most theories to small volume fractions ([0.3), with the
notable exception of the effective medium theories [8,9,14].

Experimental aspects of coarsening in the solid–liquid
system have been limited as well. The characterization of
the microstructures for comparison to theory has been
mainly confined to high volume factions of coarsening
phase using two-dimensional (2D) sections [15–20]. How-
ever, recent experiments [21–23] performed as part of the
coarsening in solid liquid mixtures (CSLM) project, a
microgravity experiment performed on the space shuttle
on missions STS 83 and STS 94, investigated the kinetics
and microstructural evolution of Sn-rich particles dispersed
in a Pb–Sn eutectic liquid matrix over a wide range of vol-
ume fractions. At low volume fractions a reasonable agree-
ment between coarsening simulations, but not coarsening
theory, and experiment was obtained. The coarsening mod-
els make predictions for three-dimensional (3D) systems,
thus the comparison between theory and the data taken
from 2D plane sections requires that the 3D predictions
of theory be recast to make predictions of the microstruc-
ture that can be measured on 2D plane sections [24]. This
was done assuming that the particles are spherical, an
approximation that is valid only at low volume fractions
where there are few particle–particle contacts.

In contrast, at higher volume fractions there was a sig-
nificant disagreement between the predictions of mean field
coarsening theory and the results from the experiment
[22,23]. These discrepancies were mainly attributed to the
increased number of particle contacts that occur at a high
volume fraction of particles. However, the coordination
number, C, defined as the number of particle–particle con-
tacts per particle, could not be determined from 2D sec-
tions. Furthermore, the coordination number has been
identified as an important microstructural parameter for
microstructures with a high volume fraction of particles.
For example, the nature of the particle contacts has been
shown to affect the thermal expansion [25] and the mechan-
ical properties of liquid phase sintered materials [26]. In
addition, the number of grain faces in single-phase poly-
crystalline materials is also an important microstructural
parameter for understanding the microstructural evolution
[27,28]. One can measure the number of contacts per parti-
cle using a 2D plane section, but in order to convert this
information to the 3D coordination number, one must
assume that the particles are spherical and either monodis-
perse [29], or make assumptions about the dihedral angle
and the 3D particle size distribution [30,31]. Thus, only
by obtaining 3D data, can one avoid the many assumptions
and approximations inherent in interpreting measurements
made on 2D sections and achieve a more direct comparison
to theory.

Within the last 10 years, there has been a dramatic
increase in the amount of 3D data published in materials
science investigations [27,32–38]. This has been due mostly
to advances in computational power and software develop-
ment, but also due to new experimental techniques for col-
lecting 3D data. Several of these investigations have
concentrated on microstructural evolution during grain
growth [27,36]. Liu et al. investigated the 3D grain struc-
ture of an austenitic steel alloy using serial sections, with
more than 1000 grains sampled. They found a near-linear
relationship between the number of faces per grain and
the spherically equivalent radius of the particle. Krill and
Chen [39] analyzed a large volume of grains in Al–Sn sys-
tem using X-ray microtomography. They found reasonable
agreement with phase-field grain growth simulations, but
poor agreement with more common 3D Poisson–Voronoi
tessellation, which is often used to describe grain struc-
tures. Grain growth is similar to particle coarsening in that
the overall energy of the system is lowered by reducing the
total interfacial area, and it can be viewed as the limit of
100 vol.% coarsening phase. However, grain growth occurs
in a single phase system, and the kinetics of the process are
controlled by diffusion of atoms across a grain boundary,
giving rise to a different temporal exponent of 1/2 for the
average grain size, and to a different steady-state grain-size
distribution.

To the best of our knowledge, there has been only one
other investigation of the 3D microstructure of a large set
of particles dispersed within a liquid matrix. Tewari et al.
[37] used serial-sectioning to analyze the 3D microstructure
of a liquid-phase sintered 83 wt.% W–Ni–Fe alloy under
varying gravitational conditions. They measured both the
particle size distribution and the particle–particle contact
distribution for samples sintered in normal gravitational
conditions and sintered in a microgravity environment.
By montaging many 2D images into one continuous sec-
tion, they could create a large 3D volume. However,
because the height of the analyzed volume was relatively
small compared to the particle diameter, many of the par-
ticles intersected the outside walls of the analyzed volume,
which significantly limited the total number of particles
that could be fully analyzed. Interestingly, they found that,
when normalized to the average number of contacts per
particle, the contact distribution was invariant with the
gravitational environment present during the sintering pro-
cess. In addition, it was found that the number of contacts
per particle was proportional to the square of equivalent
particle radius.

In this investigation, we will present the analysis of the
3D structure of coarsened Sn-rich particles dispersed in a
Pb–Sn eutectic matrix over a range of volume fractions.
Sedimentation of the particles at lower volume fractions
is avoided by processing the samples in a microgravity
environment, as part of the NASA CSLM project. A
method of efficient serial sectioning is used to collect a sta-
tistically significant number of particles (>1000) for each
volume fraction. Using these sections, the 3D microstruc-
ture is reconstructed and the particle sizes and number of
contacts per particle are measured. Furthermore, using
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microstructural simulations we will also examine the effect
of the particle size distribution and volume fraction on the
particle contact structure.

2. Experimental method

We examine two volume fractions. The first volume
fraction, containing approximately 78 vol.% Sn-rich parti-
cles was coarsened in a ground-based laboratory. Due to
the large density difference between the Sn-rich particles
and the Pb–Sn liquid, the particles sediment quickly and
form a stable network of particles, or particle skeleton,
within the liquid matrix. For this system, a stable particle
skeleton forms at a volume fraction of [80 vol.%, and
thus there was little sedimentation. The second sample
was coarsened as part of the CSLM project, and had a vol-
ume fraction of 52 vol.% solid. To avoid the particle sedi-
mentation, the heat treatments were performed in a
microgravity environment aboard the Space Shuttle
Columbia on STS-83 and STS-94. Two-dimensional analy-
ses of samples processed on these flights have been previ-
ously performed [21–23,40]. However, in order to obtain
the microstructural characteristics, such as the particle con-
tact structure, the 3D microstructure was determined using
serial sectioning and 3D reconstruction.

Traditional 3D serial sectioning is an extension of 2D
sectioning techniques, where sequential 2D sections that
are closely spaced are imaged, then aligned and stacked
using a computer program, generating a 3D structure
[32,35]. In the method of serial-sectioning originally devel-
oped by Alkemper and Voorhees [35], the sectioning
machine and microscope are integrated so that each 2D
section can be imaged without removing the sample from
the mount. This eliminates the need for fiduciary marks
since any rotational misalignments are negligible, and only
the translational misalignment caused by moving the sam-
ple between the microscope and the micromiller areas must
be measured. The translational misalignment is determined
to an accuracy of <0.5 lm. The images obtained are then
Fig. 1. Representative 2D sections of the microstructures aft
stacked into a 3D array by using the measured misalign-
ments, creating a reconstruction of the 3D microstructure.

Serial sections were taken from each sample using this
method. The optical resolution of the images in the 2D sec-
tions was 1.1 lm for both the 78 vol.% sample and the
52 vol.% samples. The distance between two consecutive
sections, or the section height, was chosen so that the there
were approximately 20 sections over an average particle
diameter. The section heights were 6.65 lm for the
78 vol.% sample and a 4.75 lm for 52 vol.% sample. This
sets the resolution of the reconstruction in the sectioning
direction.

Before the 3D structure can be graphically rendered
from the data, the location of the interfaces between the
solid particles and the liquid matrix must be determined.
This is achieved by thresholding the images so that each
pixel belonging to the particle phase is set to white (or a
value corresponding to white), while each belonging to
the matrix phase is set to black.

Because there is no contrast between the particles at the
particle–particle contacts (see Fig. 1), the particle–particle
interface cannot be determined simply by processing the
image. In a two-dimensional analysis, it would suffice to
draw a separating segment between two contacting parti-
cles. However, since the 2D images obtained herein are
reconstructed into 3D structures, such a method would
result in unsegmented particles when the boundaries are
nearly parallel to the sectioning direction. In order to
detect boundaries between contacting particles in three
dimensions, we implement a 3D watershed segmentation
algorithm.

The watershed technique provides a method for seg-
menting contacting particles in three dimensions, as well
as uniquely labeling each particle so that the particle can
easily be identified for further analysis. The watershed
segmentation of microstructures was first proposed by
Digabel and Lantuájoul [41]. The watershed method is best
understood in terms of geography, where a watershed is
defined as the line of division between two adjacent
er 9500s of coarsening at (a) 78 vol.% and (b) 52 vol.%.
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drainage basins, so that a drop of water on one side of the
watershed segmentation line flows downward to one basin,
and a drop of water on the other line flows downward to
the other basin.

Fig. 2 shows an example of how the watershed algo-
rithm segments joined particles. For clarity the example
is presented in 2D, however the algorithm is easily
extended to three dimensions. In order to use the watershed
method to segment the particles, the volume (or in the case
of 2D, an image) needs to be transformed so that each par-
ticle acts as an individual basin. This is done by construct-
ing a Euclidean distance map of the volume, so that the
value at each element of the array, or pixel, is the minimum
distance to the solid–liquid interface, as shown in Fig. 2(b).
Here, the distance from a pixel inside a particle to the inter-
face is defined as a negative distance, and the distance from
a matrix pixel is a positive distance. This creates a virtual
basin for each particle with a minimum near the center of
the particle, and also creates virtual ridges along the parti-
cle–particle contacts.

Because the distance function either continuously
increases or decreases (the function does not contain any
flat steps or terraces), we can implement a simple rainfall-
Fig. 2. Two-dimensional example of the rainfalling watershed segmentation. (a
2D Euclidean distance map, where each point is equal to its distance from
simulations are displayed, showing how the simulated raindrops collect in each
basin are labeled with a unique identifier for that basin, effectively segmenting
ing watershed [42]. The algorithm simulates the motion
of a raindrop, first placing it at a pixel, then allowing the
rain drop to flow downhill until it reaches the minimum
height of the basin (a collection point), which has an asso-
ciated identifier, as illustrated in Fig. 2(b). The original
pixel, as well as any pixels along the downhill path are then
labeled with the unique identifier (Fig. 2(c)). This process is
repeated at each pixel belonging to the particle phase. The
downhill motion of the drop is simulated by moving the
drop to the nearest neighbor minima. If the drop is at the
minimum value for the nearest neighbor box, it is assumed
that the drop is at a basin minima and the path is labeled
with a new unique identifier. If the surface contained any
steps, or terraces, the nearest neighbor minima would not
be sufficient to determine whether or not the drop had
reached the bottom of a basin. There are many other
watershed algorithms that address this problem, but they
are unnecessary for this work (for a more complete review
of watershed algorithms see the review by Roerdink and
Meijster [43]).

The largest error associated with the watershed tech-
nique is over-segmentation, wherein a particle is incorrectly
separated into two or more regions. Over-segmentation
) Binary image of the particles before segmentation. (b) Surface plot of the
the interface making each particle a basin. Several example rainfalling
of the particle basins. (c) All the rainfalling points that collect in the same
the particles.



Fig. 3. A 3D reconstruction from serial sections of 78 vol.% Sn particles
within a Pb–Sn eutectic matrix after 9500s of coarsening. The Pb–Sn
eutectic matrix has been made transparent so that the particles can be
viewed.
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Fig. 4. Normalized particle size distributions for 78 vol.% Sn particles
after 9500s of coarsening. Also plotted are the Marsh and Glicksman
particle coarsening theory (MG) [14] and the results from grain growth
simulation by Krill and Chen (KC) [39].

D.J. Rowenhorst et al. / Acta Materialia 54 (2006) 2027–2039 2031
occurs when the shape of the particles deviates from a per-
fect circle (or sphere in the 3D case), causing multiple min-
ima within one particle. The over-segmentation can be
greatly reduced by smoothing the distance map to remove
noise near the bottom of the basins, thus smoothing over
multiple closely spaced minima. We implemented a box
average smoothing of the distance map to reduce the fluc-
tuations near the bottom of the basins. To further reduce
over-segmentation, we proceed as follows. The value of
the distance map at the identifying minimum is given
approximately by the radius of the particle. Thus, one
would not expect to find another minimum within that dis-
tance. If another minimum is found within the value of the
distance function at the minimum of the particle, the two
regions can be safely combined into one particle region.

Since the watershed segmentation is fully automated and
does not require user intervention, it allows for a large
number of particles to be segmented and analyzed quickly.
With each particle uniquely identified, the position and the
particle size of each particle can easily be determined. Here,
we use the center of mass for the position of the particle,
and the spherically equivalent radius for the particle size.
Since particles near the edge of the sampled volume may
intersect the edge, they need to be removed from the anal-
ysis. However, simply removing particles that contact the
edge of the analyzed volume would bias the results toward
smaller particles, which are less likely to intersect the edge
than larger particles. Thus, a guard frame with a thickness
of 1.5 times the average particle radius is constructed
around the sample. Any particle that has a center-of-mass
position in the guard frame is removed, thus removing edge
effects in an unbiased manner.

The number of contacts per particle can be obtained by
counting the number of unique regions that directly neigh-
bor a given particle region. Only particles that are not elim-
inated by the guard frame can act as the primary particle,
or contacted particle. All the particles in the analyzed vol-
ume, including those that are within the guard frame, can
act as a secondary, or contacting particle. Any thin liquid
films that form between the particles that have a width less
than the resolution of the reconstruction will also be
counted as a contact. As mentioned before, the resolution
of the reconstruction is 1.1 lm in the section plane, and
the section height sets the resolution in the third direction.
The segmentation of the particles and analysis is computer
automated, eliminating the need for human intervention,
and thus is capable of generating a large amount of statis-
tics in a relatively short time in an unbiased fashion.

3. Results and analysis

The 3D reconstruction of the high-volume-fraction
sample processed on earth is shown in Fig. 3. The total vol-
ume of sample analyzed is 1.35 mm · 1.94 mm · 1.00 mm,
reconstructed from 150 sections. One thousand one hun-
dred and seventy particles are analyzed after the removal
of those in the guard frame. The measured volume fraction
of the analyzed volume is 78 vol.%, and the average
particle radius is 57.8 lm. The reconstruction shows that
at this high volume fraction the particles are irregularly
shaped, but are still approximately equiaxed. The gravita-
tional direction is along ŷ. The particles do not show any
particular deformation in this direction, indicating that
the gravitational force is not significant enough to deform
the particles, although it is enough to cause their
sedimentation.

The normalized particle size distribution (PSD) is shown
in Fig. 4. Two theoretical predictions are overlaid for com-
parison. The first is from Marsh and Glicksman [14], which
is a mean-field theory for coarsening at various volume
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fractions. This is one of the few particle coarsening theories
that make predictions at high volume fractions (VV > 0.5).
There are significant disagreements between this theory
and the experimental results. This discrepancy is most
likely because, while the MG theory makes predictions at
higher volume fractions, the theory does not account for
the particle–particle contacts and shape distortions needed
to fill space at higher volume fractions. As a particle begins
to contact other particles, the contacts create a flat surface,
and thus the interface must possess regions of high curva-
ture to enclose the particle, as seen in Fig. 5. The flat sur-
face does not contact the liquid matrix, and therefore the
flat surface does not have a diffusional interaction with
the other particles, which lowers the effective area of the
particle. The high curvature regions do contact the liquid
phase and the high curvature regions do have a diffusional
interaction with the other particles through the liquid
matrix. This means that a larger particle with a high num-
ber of contacts will appear to expose a higher curvature to
other particles than is represented by the volume equivalent
radius. We hypothesize that it is this increase in the effec-
tive curvature that stabilizes the larger particles in the tail
of the PSD at high volume fractions. As the volume frac-
tion increases, the number of the particle–particle contacts
and the shape distortions will increase, leading to a larger
discrepancy.

The second comparison is with a phase-field simulation
of grain growth from Krill and Chen [39]. In this model,
grain growth occurs in a single phase material in which
the grain boundary energy is assumed to be isotropic. This
case can be considered equivalent to the limit of particle
coarsening at 100 vol.% of coarsening phase. The normal-
ized particle size distribution for the grain growth simula-
Low Curvature
Particle Contact

High Curvature
Region

Fig. 5. Micrograph of VV = 0.78 sample at 9500s of coarsening time,
showing the difference in curvature at particle contacts and regions
neighboring contacts. The gray lines representing particle contacts have
been added for clarity.
tion is in better agreement with the experimental results.
However, there are some small discrepancies between the
two PSDs, especially at larger particle sizes. The PSD of
the grain growth simulation has a lower peak hight and
is broader than the PSD of the experiment.

Fig. 6 shows the reconstruction of the 52 vol.% sample
processed in a microgravity environment. The total sample
size analyzed was 1.65 mm · 1.950 mm · 0.760 mm, and
was obtained using 160 sections. Note that the total sample
volume collected is larger than what was collected for the
high-volume-fraction sample due to improvements in the
optical system that increased the size of the sampled areas
in the 2D sections. The measured average particle size is
44.6 lm with 1808 particles analyzed. The reconstruction
shows that the particle shape is much more spherical com-
pared to those in the higher-volume-fraction sample. Due
to a lower volume fraction, this sample has much more
space between particles, leading to a longer characteristic
diffusion distance and a longer diffusion time scale. Since
coarsening is mediated by diffusion between particles, this
explains the smaller average particle size compared with
that of the higher-volume-fraction sample at the same
coarsening time.

Fig. 7 shows the normalized PSD for the 52 vol.% sam-
ple. Overlaid are the PSDs for the 78 vol.% and the grain-
growth phase-field simulation discussed earlier. We see that
the 52 vol.% PSD is narrower than that of the 78 vol.%
sample and that of the grain growth simulation. This is
consistent with 2D experimental measurements as well as
particle coarsening theories at lower volume fractions,
which concluded that the PSD will become shorter and
broader as the volume fraction increases [4,14,21,40]. How-
ever, there is still considerable disagreement in the overall
shape of the distribution between the experiment at
52 vol.% and the predictions of particle coarsening theory.
We also observe that the peak of the PSD moves toward
Fig. 6. A 3D reconstruction from serial sections of 52 vol.% Sn particles
within a Pb–Sn eutectic matrix after 9500s of coarsening. The Pb–Sn
eutectic matrix has been made transparent so that the particles can be
viewed.
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lower normalized particle sizes as the volume fraction
increases. This behavior has also been observed in experi-
ments that employ measurements made on 2D sections,
as well as in 2D phase-field simulations of particle coarsen-
ing [44], but is not well represented in most particle coars-
ening theories [8,14,45]. In addition, the trend that the
slope of the tail of the PSD increases as the volume fraction
decreases continues at 52 vol.%.

In grain growth, the numbers of grain faces, edges, and
vertices are important measures in characterizing micro-
structures. In the particle coarsening system, particle edges
and vertices are not easily defined. However, the number of
Fig. 8. Reconstructions of contacting particles. The center particle is colored
colored. Images (a)–(c) are from the 78 vol.% sample, images (d)–(f) are from th
(b) 53 lm radius particle with eight contacts. (c) 110 lm radius particle with 20
radius particle with four contacts. (f) 74 lm radius particle with eight contacts.
those at 78 vol.%.
particle–particle contacts, C, is analogous to the number of
grain faces, F, and in the limit of 100 vol.% coarsening
phase these two measures are equal. The number of parti-
cle–particle contacts is measured for each particle within
the unbiased sample volume. In Fig. 8 we show several par-
ticles with their contacting neighbors. We can see from
these images that the number of contacts is a function of
the particle size of the primary particle. This relation is
shown more clearly in Fig. 9, where C=�C is plotted as a
function of ðRC=�RÞ2 for the two volume fractions. Tewari
et al. [37] suggest that it is reasonable for the normalized
number of contacts, C=�C, to be proportional to the surface
area of the primary particle and thus is given by:

C=�C ¼ RC=�Rð Þ2 ð1Þ
where RC is the average particle radius with a given number
of contacts. While this equation seems to describe their
data well, it is unclear if this should be the case for other
systems as well.

Fig. 9 shows that the 52 vol.% sample does display the
linear functionality predicted by Eq. (1), but the slope of
the line is less than one. The normalized number of con-
tacts in 78 vol.% sample clearly is not linear with the square
of the normalized average particle size. We see that smaller
particles have a larger number of contacts than expected
from this equation. It appears that, at larger values of
RC=�R, the normalized number of contacts does follow a lin-
ear trend, but again the slope is less than one.

Fig. 10(a) shows the distribution of contacts, C, for the
78 and 52 vol.% samples. We have also included the distri-
bution of grain faces, F, from the grain growth simulation,
which is analogous to C in the particle coarsening system.
red for all of the reconstructions, the contacting particles are randomly
e 52 vol.% sample. (a) 25 lm radius particle with three contacting particles.
contacts. (d) 49 lm radius particle with two contacting particles. (e) 37 lm
Also evident is that the particles at 52 vol.% tend to be more spherical than
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It is evident that the volume fraction has a dramatic effect
on the connectivity of the system. The average number of
contacts increases more than twofold, from 3.66 for
52 vol.% to 8.36 for 78 vol.%. In addition, the distribution
becomes much broader as the volume fraction increases.
We note that for the 78 vol.% sample every particle has
at least one contact. This is expected since the sample
was coarsened under normal gravitational conditions,
causing sedimentation of the particles. However, even the
52 vol.% sample, which was coarsened in a microgravity
environment in an effort to eliminate sedimentation, has
only seven free-floating particles, a small number consider-
ing that over 1800 particles were analyzed.

The normalized contact number distribution is pre-
sented in Fig. 10(b). The result shows that there is good
agreement between the normalized particle contact distri-
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butions at the two different volume fractions. The two nor-
malized contact distributions also agree reasonably well
with the distribution for the normalized number of faces
from the grain growth simulation for C=C > 1, and the dis-
agreement is only significant at lower contact numbers,
C=C < 1. The difference stems from the fact that grain
growth requires the particle phase to fill space, and thus,
assuming flat grain faces, each grain must have at least four
faces. With the particle microstructure there is no such lim-
itation, therefore less than four contacts is allowed. Despite
this difference, the agreement between the contact distribu-
tion measured at 80 vol.% and the number of faces during
grain growth is very good for almost all C=C.

While the phase-field simulation of grain growth
appears to describe the PSD of the experimental data well,
the kinetics of grain growth and particle coarsening are
very different. During particle coarsening the kinetics are
controlled by the diffusion of material from smaller parti-
cles to larger particles through the matrix, thus increasing
the average particle size over time. Coarsening theory
[2,3] shows that the average particle size, RPC, will increase
with time, t, as described by a power law:

RPCðtÞ ¼ ðKPCðV VÞt þ RPCð0Þ3Þ1=3 ð2Þ
where KPC is the particle coarsening rate constant, which is
a function of the volume fraction, VV, of the coarsening
phase, and RPCð0Þ is the average particle size at t = 0.

On the other hand, the kinetics of grain growth are con-
trolled by a very different process, where growth or shrink-
age are mediated by atoms jumping across the grain
boundary interface. Traditional grain growth theory
[46,47] predicts that the average grain size, RG, is given by

RGðtÞ ¼ ðKGt þ RGð0Þ2Þ1=2 ð3Þ
where KG is the grain-growth rate constant. Unlike particle
coarsening, KG is not a function of volume fraction since,
by definition, grain growth occurs in a single phase system,
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Table 1
Minimum overlap parameter needed to create a simulated microstructure
and the resultant average number of contacts per particle

Microstructure Minimum f C per particle

52 vol.% Experiment N/A 3.66
78 vol.% Experiment N/A 8.36
100 vol.% Phase field simulation N/A 13.7
52 vol.% Random simulation 0.0 0.00
66 vol.% Random simulationa 0.18 4.72
66 vol.% Random simulationb 0.18 4.46
78 vol.% Random simulation 0.32 6.79
78 vol.% Monodisperse simulation 0.51 6.99

a Simulated 66 vol.% using the PSD from the 52 vol.% experiment as
input.

b Simulated 66 vol.% using the PSD from the 78 vol.% experiment as
input.
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i.e., 100 vol.%. Krill and Chen show that their simulation
result follows the grain growth law, RG / t1=2.

One of the objectives of the CSLM project was to com-
pare the kinetics of the particle coarsening with theoretical
predictions. This was achieved by determining the average
particle size as measured on plane sections as a function of
coarsening time for a variety of volume fractions [21,23,40].
These studies showed that the average particle radius was
proportional to t1/3 for all volume fractions including 50
and 80 vol.%. Thus, we conclude that the kinetics of the
systems considered here are consistent with a diffusion-lim-
ited coarsening process.

However, the PSD and the contact distribution at
78 vol.% are very close to those for grain growth. It is
unclear whether the similarity in the normalized contact
distributions from the two experiments and the phase-field
model for grain growth is a consequence of the microstruc-
tural evolution processes, or is a result of packing a poly-
disperse set of particles to a particular volume fraction.
Therefore, we simulate the random packing of polydisperse
spheres within a volume by using the experimentally mea-
sured PSD. Since it is nearly impossible to place nonover-
lapping polydisperse spheres at higher volume fractions
(P50%), it is necessary to allow the spheres to overlap.
We use the extent of the overlap as an input parameter.
In this simulation, the spheres are randomly placed in
space, starting with the largest particle bin in the given
PSD and ending with the smallest. This bin-by-bin place-
ment is necessary to place particles with as little overlap
as possible at high volume fractions where the amount of
free volume is limited.

A user defined overlap parameter, f, sets the maximum
amount of overlap allowed between two particles as
follows:

dij > ð1� f Þri þ rj for ri < rj

dij > ri þ ð1� f Þrj for ri P rj
ð4Þ

where dij is the distance between the centers of spheres i

and j, and ri and rj are the radii of spheres i and j. This
criterion, in which the maximum overlap distance is given
by a fraction of the smaller particle, prevents the smaller
particle from being placed entirely within the larger parti-
cle. To account for the overlapping volume that occurs
when two particles contact, the overlap volume is sub-
tracted from the original particle volume. The spherical
equivalent radius is then calculated based on this cor-
rected volume. This spherical equivalent radius is then
used to calculate the volume fraction of particles, and
the PSD of the simulations. Thus, there can be small dif-
ferences between the input PSD and the final PSD,
depending on the allowed amount of particle overlap in
the simulations. Fig. 1(b) shows that the dihedral angle
formed between Sn-rich particles is small for the Pb–Sn
system. Therefore, we assume that all the boundaries in
the system are wetted (or equivalently that the dihedral
angle is equal to zero), and that the particle overlap
approximates the shape distortions needed to accommo-
date the desired volume fraction. Therefore, we choose
to minimize the overlap parameter while achieving a sim-
ulated microstructure. Using the smallest possible overlap
has the added advantage of causing the smallest amount
of change between the input PSD and the resultant
PSD. This minimum overlap threshold was determined
by iteratively constructing microstructures with decreasing
overlap parameters until the simulation could not reach
the desired volume fraction with a large number of at-
tempts create the microstructure.

Table 1 lists the volume fraction, minimum overlap frac-
tion achieved, and the resultant average number of
contacts per particle for the random simulated microstruc-
tures, and Fig. 11 shows representative cross-sections of the
simulated microstructures. Notice that the minimum over-
lap needed to create a 52 vol.% microstructure is zero
(Table 1). This means that a random structure, with this
particle size distribution, can be constructed so that no par-
ticle touches another particle. Packing theory has shown
that for loose random packing of monodisperse spheres
the maximum volume fraction that can be achieved is
approximately 56 vol.% [48]. While the structures consid-
ered here have a polydisperse particle size, we find that this
volume fraction was approximately the same for the zero-
overlap maximum packing limit. The results show that
there are a significant number of contacts within the exper-
imental microstructure. We believe that this discrepancy
arises from local clustering of the particles in the experi-
mental sample. Close examination of the 2D sections from
the simulations (Fig. 11(c)) and the 2D section from the
experiment (Fig. 1(b)) shows that while the overall volume
fraction of the experiment is comparable to the 52 vol.%
simulation, the local contact structure around a particle
is similar to that in the 66 vol.% simulation.

This qualitative observation of clustering can be quanti-
fied by measuring the pair correlation function (PCF). The
PCF is defined as the ratio of the number of particle centers
per volume averaged over a spherical shell of radius x and
thickness dx around a particle to the total number of par-
ticles per unit volume:



Fig. 11. Two-dimensional sections of the simulated microstructure at (a) 78 vol.%, (b) 66 vol.%, and (c) 52 vol.%
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GðxÞ ¼ N V in a shell of radius x to xþ dx

N V

ð5Þ

where NV is the number of particles per volume and NV is
the total number of particles per volume. For any structure
that does not have a long range order, G(x)! 1 as x!1.
In order to compare the simulation and experimental
microstructures, the PCFs are normalized to the average
particle radius.

The normalized PCF for the 52 vol.% sample is shown
in Fig. 12. The primary peak for this structure is located
at less than 2R indicating that, on average, the distance
between two neighboring particles is less than the sum of
the radii of two average-sized particles. The PCFs for the
52 and 66 vol.% microstructure simulations are also plotted
in Fig. 12. It is clear that the location of the primary peak
differs significantly between the 52 vol.% simulation and
the experiment. In contrast to the experiment, the simula-
tion results show the primary peak is greater than 2R. This
indicates that locally the particles are closer to each other
in the experiment than in the simulation where particles
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Fig. 12. The pair correlation function for the 52 vol.% experiment, and
simulated random microstructures at 52 and 66 vol.%.
are randomly placed. Therefore, the particles in the exper-
imental sample are not randomly distributed, but rather
clustered. Fig. 12 shows that the position of the primary
peak is consistent with a random spatial distribution of
particles at a volume fraction of 66 vol.%. Thus, we will
use the simulated 66 vol.% microstructure as an approxi-
mation of the local contact structure in the 52 vol.% struc-
ture. The average number of contacts for the 66 vol.%
sample is 4.70, which is higher than what is measured for
the 52 vol.% experiment. This is expected since the simula-
tion only approximates the local clustered structure found
in the experiment. Particles that are near the edge of a clus-
ter will have a lower number of contacts than those in the
middle, thus lowering the average.

Fig. 13 shows the normalized contact distributions for
the simulated microstructures and for comparison we have
also included the normalized contact distributions for the
experimental microstructures. Fig. 13(a) shows the normal-
ized contact distributions for the simulations at 78 vol.%.
We find that there is relatively good agreement between
the simulations at 78 vol.% and the experimental results
at the volume fraction. Notice, however, that the normal-
ized contact distribution for the simulated microstructure
is slightly shifted to left as compared to the experimental
results. Also, as shown in Table 1, the simulated average
number of contacts for this volume fraction is somewhat
lower than in the microstructures that were measured
experimentally. One reason for this discrepancy is that
the experimental particles are deformed and are irregularly
shaped. It has been shown that for hard mono-disperse
ellipsoids the average packing fraction and number of con-
tacts is higher than what is found for hard sphere packing
[49]. Fig. 11(a) shows a 2D section of the 3D simulated
microstructure. It shows that the overlap parameter only
approximates the shape distortions and does not reproduce
the anisotropically deformed particles that are often
observed in the real microstructure seen in Fig. 1(a). In
addition, the simulation has a near perfect resolution for
determining whether two particles contact, with the only
limit being the numerical machine precision. However, as
mentioned in Section 2, the 3D reconstructions have a
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finite resolution, with the poorest resolution being in the
sectioning direction. This would give rise to an overestima-
tion of the number of contacts in the experimental mea-
surements. We believe that the shape deformity and
experimental resolution fully explain the differences
between the experimental and simulated results.

Also plotted in Fig. 13(a) is the contact distribution for a
monodisperse PSD (i.e., the radius of the particle is fixed to a
single value). There are dramatic differences in the shape of
the distribution, although the average number of contacts
for the monodisperse distribution is very similar to the poly-
disperse simulation (see Table 1). The normalized contact
distribution is much narrower, and more symmetric than
the distributions from the polydisperse systems. Thus, large
changes in the shape of the PSD do have an effect on the con-
tact structure. Furthermore, the invariance of the normal-
ized contact distribution as a function of volume fraction
during coarsening does not indicate that the contact distri-
bution is unique for a given volume fraction of particles.
The contact distribution is a function of the PSD; however,
the small differences in the PSDs seen experimentally as the
volume fraction changes are not large enough to signifi-
cantly change the normalized contact distributions. To ver-
ify this, two microstructures were simulated at 66 vol.%; the
first using the experimental 52 vol.% PSD as the input PSD
and the second using the experimental 78 vol.% PSD as
input for creating the simulated microstucture. We see little
change in either the average number of contacts (Table 1) or
the normalized contact distributions (Fig. 13(b)).

Fig. 13(b) also shows that the normalized contact distri-
bution for the simulated 66 vol.% microstructure agrees
well with the experimentally measured distribution for
52 vol.%. As mentioned above, because of clustering within
the experimental microstructure, 66 vol.% was used as an
approximation to the local structure in the experimental
microstructure.

Fig. 14 shows the normalized number of contacts as a
function of the square of the normalized contact particle
radius. The 66 vol.% simulation shows a linear relation-
ship, and the slope of the line is approximately one. The
difference in the slope between the experiment at 52 vol.%
and the simulation at 66 vol.% most likely is due to the
clustering that occurs in the experiment, where particles
along the edge of a cluster would have a lower number
of contacts, thus lowering the average for a given radius.
Alternatively it may be due simply to the change in volume
fraction between the experiment and the simulation.
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Fig. 14 also shows that the simulation of the 78 vol.%
microstructure agrees with the experiment, with the simula-
tion duplicating the same nonlinear trend as observed in
the experiment. There may be several reasons for this non-
linearity. The first maybe the nonspherical shape of the
particles. In the simulations the nonspherical nature of
the particles is approximated by the overlap. As the allow-
able overlap increases, the resulting particle shape will
become less spherical. Another cause maybe a size–size cor-
relation of the particles, so that smaller particles are more
likely to be near larger particles and have a larger number
of contacts. In the experiment a size–size correlation would
be driven by the coarsening process. However, in the sim-
ulation, the size–size correlation is created by the method
that is used to place particles in the simulation box. The
smaller particles are the last particles to be placed in the
volume, with the only remaining sites available for these
small particles are the spaces formed between several larger
contacting particles, which then establishes the size–size
correlation in the simulation. In order to compare accu-
rately the size–size correlations between the simulation
and the experiment, one would require approximately 10
times more particles in the experimental volume to generate
sufficient statistics.

It is important to note that, like the normalized contact
distribution, the number of contacts as a function of
particle radius is not a universal property of the packing
of particles, and is not independent of PSD for the micro-
structure. For instance, for a monodisperse set of particles,
there would be a vertical line on such a plot at ðRC=�RÞ2 ¼ 1.
Thus, the results from the microstructure simulations show
that at high volume fractions of coarsening phase, it
appears that the normalized particle contact structure is
unique to a given PSD. It is critical to note that the physics
that ultimately determine the shape of the PSD are depen-
dent on the short range spatial arrangements of the parti-
cles, thus one cannot claim that during particle
coarsening the contact structure is purely a function of
the PSD, or that PSD is a function of the particle contacts;
the two properties cannot be separated.

4. Conclusions

An efficient method of serial sectioning is used to ana-
lyze a large number of Sn particles coarsened in a liquid
Pb–Sn eutectic matrix. Our experimental results show that
the normalized particle size distribution and the normal-
ized contact distribution are similar to the results for
phase-field simulations of grain growth for volume frac-
tions of 52% and 78%, but the kinetics follow the classical
diffusion limited particle coarsening prediction.

Simulated microstructures were constructed by ran-
domly placing spherical particles within a simulation
volume using the experimentally determined PSDs. An
overlap parameter allowed for particle contacts and
approximated the observed particle shape distortions.
The simulations have a lower mean number of contacts
per particle than the experiments. However, when normal-
ized by the mean number of contacts, we find that the con-
tact distribution is approximately independent of the
volume fraction for the experimental results, as well as
for the simulated microstructures.

By examining the pair correlation functions for both the
experiments at 52 vol.% and the simulations, it is found
that the particles in the experiment are clustered compared
to the random particle simulations. This clustering
accounts for most of the difference in the average number
of contacts in the experimental and simulated microstruc-
tures. We also observe that, when the PSDs are relatively
similar, the contact distribution scaled by the average num-
ber of contacts is approximately independent of the volume
fraction of particles.

At lower volume fractions (<70 vol.%) we find that the
number of contacts is proportional to the square of the
spherical equivalent particle size in both the experiments
and the simulations. However, the experiments and simula-
tions at the higher fraction display a nonlinear relationship
between the number of contacts and the square of the par-
ticle radius. We attribute this primarily to shape distortions
at the higher volume fractions. These experiments show the
influence of shape distortions and particle contacts on the
coarsening process, and the importance of including shape
distortions and particle contacts at high volume fractions
in any theory of coarsening.
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